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Abstract mentations [8]. It is based upon the concept of providing low-level
The definition and implementation of coherent methods of repregﬁgggitosniﬁ%?é::{(ogt?ﬁgﬂtr@c g?ct?nt?k?;tcsfrf]okr)fsdZﬁrﬁfgﬁhzyuan?;glt:
senting data as a formal data model have been used to create g ’ P

- A . (ﬂ-ogram Center's netCDF, which is more focused on data transport
eral-purpose tools for visualization, computation and dat

management. Despite the relative success of these data modagl,' Both CDF and netCDF support disk-based operations.

there are gaps in their capabilities to support either specific classenother example is the Hierarchical Data Format (HDF) developed
of data or to map well to a user’s problem domains. Therefore, @y the National Center for Supercomputing Applications [7]. HDF
higher-level data model based upon a simple functional definition igises an extensible tagged file organization to provide access to
proposed and tested, which leverages some of the facilities of extatiasic data types like a raster image, multidimensional block, simple
implementations. hierarchical collections, etc. Currently, all of HDF's data structures

; : . P are memory resident. A lack of scalability in HDF is being
g? d%gi‘;ﬁlﬂgﬁoﬁdgf 1\/%?;iya(:%(ﬂss’;tzeﬁlssuentmc Databases. addressed with a new implementation (HDF5) that offers improved

: ’ performance at an array access level by enabling users to have more

1. INTRODUCTION control over how data are stored and accessed.

The instrumentation technology behind data generators in a myriadlisAD (Visualization for Algorithm Development) was developed

of disciplines is rapidly improving, typically much faster than the by the University of Wisconsin to provide interactive computation
techniques available to manage and use the resultant data. Highnd visualization facilities derived from a set of abstract models.
visible examples occur in projects such as NASA's Earth Observing he VisAD data model assumes that data objects are approxima-
System and the DOE Accelerated Strategic Computing Initiativetions to mathematical objects [5]. It supports a wide range of data
(ASCI), which produce many TBs of data. For scientific visualiza- types associated with rich metadata, which are embodied as abstract
tion the role of data management can be expressed by the need fodlata classes in Java. These facilities are coupled with a display
class of data models that is matched to the structure of the data #8odel implemented in Java3D, which is defined by a set of map-
well how such data may be used. pings from primitive data types to primitive display types [6].

1.1 Conceptual Models in Visualization Data Explorer is an extended, client-server data-flow system for

To place data models in context consider the following taXonorm,wsual|zat|on that is built upon a data model, which supports gener-

which decomposes visualization into a set of conceptual models. &ized field representation with an API, high-level-language and
. - . . visual program access [1]. The data model is derived from the
eUser: how user requirements are

* b = considered mathematical notion of fiber bundles as an.ak.)straption fo‘r s_cientific
o [ S nteraction: how a user interacts  data management [3]. In Data Explorer, this idea is specialized and
. I - with visualization extended to incorporate localized, piecewise field descriptions, sup-
N «Computational: how operations ~ POrt compact representations that exploit regularity, and data-paral-
E‘f"“ are expressed lel execution. This permits consistent access to data independent of
woce «Communication: how system its underlying grid, type or hierarchical structure via an uniform
& 5 : components interact abstraction to provide polymorphic functions. Data communication
e ruracas «exen *DiSplay: how data are realized  among subsequent operations is accomplished by passing pointers,
L bt land rendered and sharing of these structures among such operations is supported
Figure 1. Conceptual Models in Visualization. [4]. Currently, the physical disk-based format, dx, provides only
1.2 Data Models simple sequential access.

A data model is a representation of data, that is how data ar&rom the aforementioned efforts, ASCI, as part of its overall data
described (e.g., abstract data type) and how data are used (e.ganagement effort, is developing a very comprehensive data model
applications programming interface). To serve as a lexicon of dat#0 ensure coverage of many different representations of simulation
(i.e., a lingua franca for software and users), a data model mugiata. The main entities in the model are computational meshes and
include formal definitions and algebra to express the organizatioithe simulation variables related to them. This data model also uses
and manipulation of data. In this context, visualization itself is notthe notion of fiber bundle sections for the mapping between topo-
treated as special -- just another consumer and generator of dafagical spaces. It then introduces the idea of cell complexes, which
Another way to view this idea is a layer that provides a logical link are structures that tile a physical space with geometric cells that
between the concepts that scientists use to think about their domafiiare common faces as a metaphor for computational meshes.
(e.g., particle trajectory, cerebral cortex shape, plasma temperatukénder the ASCI program, there is on-going development for this
profile, or gene) and the underlying data from simulation, experi-model and as well as tools that utilize it. The model is based upon a
ment or storage system. In particular, this layer provides tools thathree-layer approach of providing data structures for array and table
are common to all applications for data definition, metadata supaccess, then fiber bundles to provide basic mappings, and finally a
port, and query formulation and execution. mesh/field level to provide field as well as cell complex access.
1.3 Related Work HDF 5 is being used to provide the underlying access to storage [2].

4_n addition, there are other classes of data models. These include,
or example, geographic information systems (a set of static, two-
dimensional spatial layers), mechanical computer-aided design
Common Data Format (CDF), developed at NASA/Goddard Spacestatic, 3d hierarchies and non-mesh representations), and the rela-
Flight Center initially in the mid-1980s, was one of the first imple- tjonal data model (tables of discrete non-spatially-oriented values).

There are many other efforts to develop data models related to vis
alization. While their results are widely used, they have limitations.



2. A FUNCTION-BASED UNIFIED DATA MODEL + X is the space whei2 are known

Despite the capabilities of these scientific data models, there remaih Y iS the space for the (new) mapping

a few areas which are not adequately addressed. This ranges fromX andY are homotopic

the representation of other data types such as ordered structuresX and Y imply points in space with some coordinates with
(e.g., molecular models), tables and relations, highly irregular, respect to a reference system -- in theory

incc_;nsistfer(w; or non-spatial sa/_r\npl_ing lgti.e., %bservatioﬂjs)hland agare- F(p, t) implies sampling of continuous domain -- in practice
gation of disparate types. As is often the case, highly generic " . ; . .
approaches are often difficult for many scientists to adapt to their E))nlfl\l?li% %rgégu?)u\?;ﬁggtlon, but stored as a discrete setin C(X, Y)
own problem domains. Therefore, another aspect that needs ~ o ]
addressing is more direct mapping at a user level. An approacBut in practice, there are five casesFor

complementary to the aforementioned efforts is taken to resolva. If X andY are the same, then provide results unchanged (i.e.,

these limitations. available "samples")

To begin it is necessary to look at the fundamental organization and. If X andY are equivalent classes discretely, then map between
definition of data. Any data set may be considered as a single or the spaces -> Y (e.g., cartographic warping -- homotopy)

multi-valued function of one or more independent variable(s) called3. If X andY are not equivalent classes discrete, then construct a
dimensions, enumerated from 1 to j. Such dimensions may be mapping between the spaces (e.g., interpolate between spaces)

space (length, width, height), time, energy, etc. A parameter may |f x js unknown (i.e., scattered data), then construct a mapping to
have more than one value, which is characterized by tensor rank, i, v (e.g., impose aX and interpolate) or provide discrete values

the number of yalues per depen__de_nt_ variable. The nur_nber of eles-. If X andF are unknown (i.e., tabular data), then provide discrete
ments in a particular parameter iswhich can be generalized asa | 5 es

set of tuples. The function(s) composing a data set really are. . . . . .
; O ) he relationship between these cases is shown in Table 1, which
dependent variable(s). Thus, dataoimplies a parameter or field introduces a layered structure. Essentially these layers moving

O.f one or more (dt_ependent) values thatis a function of one or mor fom the bottom up define semantics, access and interface, listed on
(independent) variables, )
- _ the left to accommodate more complex data, where the functional
D = Dbpya - ¥ =g %o f) @ access is at the top. Where the five cases fit is shown at the far left.

fa(X1, Xg, .. %) :
. Cases Views Layers
1,2, 3,4,5 | *Real world’ Application
: *User/Domain Functions
fi(Xg, X e, X)] ( S)
. . ) |1, 4,5 Complexes Aggregation
These functions are continuous in nature, but sampled or dig- +Hiearchies Specialization
cretized in a fashion often dictated by the specific computations to sSeries _
be performed. Operations imply a process of transformatiorl. 4,5 *Semantics for arrays Field (e.g.,
between different functions of this class, whether it is solved as & 'Sf"‘mples or t'ablejs Fiber Bundie)
set of partial differential equations that define flow of heat or gener;5 +Virtual organization ] Multi-Dimensional
ating pixels as a rendering of some geometry. *Dimensionality, rank & attributes Arrays
. . *Physical access 1/0, Communication,
2.1 Functional Mapping «Distribution and locality Physical Storage

Consider(D), whereD are data an& is some computation, which .
may include an operation in a visualization system such as realiza20!€ 1. Layers of Function-Based Data Model. _
tion or transformation.D can be extended beyond mesh sampling This effort has focused mostly on the upper two layers as shown in
or aggregation by examining topological mappimg, Table 1 to provide a conceptual specification. An abstraction at
0 T>T 2 each level is presented in a simple fashion, but efficiencies in imple-
B E 2 2) : - -
) ) ) mentation can be addressed at the lower levels. As an illustration,
wherea is a mapping between two topological spaces (e.9., &onsider the following two figures, which show some of the under-
visualization operation). If botti anda! are continuous thea is lying components and their relationships.

considerechomeomorphic Commonly, there may be more than i
one mapping such that Haerr eyl =
ay:X-> Yanda,: X -> Y (3) e Vel
. . . / i .\
If a4 can be deformed ta, thenay is considerediomotopido a. il R B Heghbon |
Since such deformable mappings occur often in visualization, thit i TR e St
is a useful classifier fd¥(D) (see below). Thus, o Eraprmahien ™, ,
F: X x [O, 1] >Y (4) o X Wariable |
) . _ _ -~ "'\-H .\_H_\-\-TJ'.IH- ___.-"
If Fis continuous such th&t (x, 0) =a4, F (x, 1) =a, and as the Fadd ) -
real variable, t, inF (x, t) varies continuously from [0, 1]x; is I:\ - o = =
-, i ]
deformed continuously inte, kol ' : =
T et R
As a result, homeomorphism generates equivalence classes whc o ......:“*. f-’nm.unam'hl
members are topological spaces while homotopy generates equiv | Pastined | |, ek
. L% A %, Walwa __.-'II
lence classes whose members are continuous maps. Hence, hon e o

topy equivalent classes are topological invariants of X and Y whichFigure 2. Taxonomy of the Field Layer.
enables one to vary X or Y through a family of spaces, C(X, Y), as

a collection of valid visualization mappings. Figure 2 illustrates one taxonomy of the field layer, which can be

_ decomposed into meshes on which the data are sampled that are
ReconsidefF (D) such thaf: X x [0, 1]-> Y, then: either implicitly positioned (i.e., regular) or explicitly positioned



(i.e., irregular). In the latter case, the mesh may be topologically
regular, in which only the locations of the sample points need be "
specified, or topologically irregular, in which connectivity informa-
tion is required. In all cases, the actual data values on the samp
points are defined. All of this information is stored as a collection
of multidimensional arrays (i.e., the array layer). The metadate
associated with the arrays provides the semantics to define a field
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Figure 3 shows sample taxonomies for the aggregation layer, whic
describes classes of data that can be broken down into simple field
They may range from a (time) series (a sequence of instances of : *
field) to cases which can be spatially decomposed into sets of sul e e ==

fields such as a multizone grid or a collection of spatial partitions SIS S | o 4
for parallel processing. Adding hierarchy enables a description g %= ==

an adaptive mesh. Some data may be sampled over a topological
complex mesh. In this case, it may be easier to decompose it into
set of simpler meshes, each of which is of the same class.
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Figure 4. Different Spaces and Sampling.
3.2 Case 2 and Case 4
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Figure 3. Taxonomy of Aggregation Layer.

3. EXAMPLES

To demonstrate the flexibility of this approach and to test the appli-
cability of this model, a number of applications have been identifiec
for each of the five cases. Only a handful are shown herein. Visual
ization and interaction are used to verify the decomposition anc
mapping. The data model and functionality of Data Explorer is
extended to provide the function-based interface. Some of thes
extensions are usable across different cases and applications.

3.1 Case 2

Figure 4 shows different coordinate systems and sampling for a sir
gle scalar data set, which is total column ozone in the earth’s atmo=, . . . .
sphere that is irregularly sampled on a two-dimensional manifold™igure 5. Fusion of Irregular Samplings in Space and Time.
over time. The image only shows a single time step out of a longFigure 5 shows several data sets, both scalar and vector, that are
series of daily observations. Essentially, two equivalent class mapsampled irregularly and differently on distinct three-dimensional
pings are presented via generalized cartographic projections tend two-dimensional manifolds with various irregular sampling in
three dimensions, which is a Case 2 example. The window in théime. The image only shows a single time step out of a series for
upper part of the center of the figure, shows the full data seteach of the data sets, ultraviolet intensity, proton density, tempera-
mapped to color, opacity and radial deformation. The window atture and speed, topography, and three different magnetic field data
the lower right shows only half (the southern hemisphere). In botrsets. Essentially, one equivalent class mapping is presented via a
cases, other data are registered in the final rendering and the sameneralized cartographic projection to three dimensions. Unlike the
mapping applied for annotation purposes (topography and coastlingrevious example, these may be either Case 2 or Case 4 because
data, respectively). The field is discretely sampled in one dimensome of the data sets are discretely sampled with no information on
sion and shown as a plot. The remapping is packaged as a nete relationship between the samples. Each variable is processed
function to create this application. The user only needs to specifgeparately by using the same remapping function, with which the
the field representing the original data and the new space. user specifies the original data and the new (spherical) space. Inthe
application that utilizes this function, several choices of realization
mappings are offered for the different data sets that are registered in
the final rendering in the remapped (earth-centered, spherical) coor-




dinate system. In addition, two of the data sets are plotted at th| ! [y =

lower right as a function of their original time sampling. __"':_ u.-,.::..q. _;:“

3.1 Case 1 and Case 3 Vehel T mmpntemm - e Pt
Figure 6 illustrates what appears to be conventional representatiof === s=s=== O e R e o1
of two data sets sampled irregularly on a three-dimensional manj == * == Wi P - R el
fold over time. The image only shows a single time step out of g/ saismisssmis & == E sann fepiaed | Sessn =
series of computed results. But there are some important distinc : Loy Barwd

tions. The first is that the domain on which the data are defined i
symmetric, with only one-fourth being specified by the manifold.
The second is that while one of the fields is a traditional interval’
data set (density), the other (material) is not. Material is categori
cal, specifically nominal (i.e., there is a “name” associated with
each sample space that may not be related to other sample point
Therefore, for density this is Case 1 while for material it is Case 3/
Hence, access to the categorical data is packaged as a new functi
to provide the equivalent of traditional field as well as calculation of
a derived one for sample points where the material is not homoge
nous. In both cases, the relationship between the sampling man
fold and the domain is hidden within the function. The application||
shown in the image allows the user to specify various realizationg|
and interact with them. In addition, the fields may be queried by
invoking the new functions directly. The results are shown both agq 3
values in the three-dimensional scene as well as plotted in the lowg |
right. In addition, the material function enables remapping betweer
those data and density, so that density surfaces can be color mapp
by material or the density of specific materials can be illustrated.
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T s i i | e i | Figure 7. “Resampling” of Tabular Data.
) 4. CONCLUSIONS

Data models can hide the complexity of underlying computational
systems for simulation, analysis and visualization by providing a
common mechanism for access, utilization and interchange. A
study of data model efforts and limitations in how tools that utilize
them map to end user requirements has led to a taxonomy of con-
ceptual models for visualization. In turn, this taxonomy has
enabled a simple formalism to define a set of higher-level functions
that map directly to how data may be used in visualization. To test
these ideas, a collection of higher-order functions have been imple-
mented by leveraging the capabilities of a lower-level data model.
This demonstrates the feasibility and potential applicability of this
idea. Current plans include the further extension and application of
these higher-order functions and continuing to refine the formalism.
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