Thoughts about
levels of complexity and specialization in
data types and structures
for storing scientific data

Mike Folk, Don Sawyer, Lou Reich and the FEPC

Rev 16: Revised Aug 5, 2000

1. Changes:

2. Additions marked in blue-underline. Deletions in red strikethrough. Some additions and deletions are from rev 9, left in because we're still talking about them.

3. Significant rewrite of 3.1 and 2 into one consistent (almost) section

4. Mike redid figures 2(a)-2(e) and moved them into an appendix.

5. Mike changed Fig 1 into Fig1a and Fig 1b, and added some text. Still needs help from Lou.

6. Mike started work on Section 4.4, which is a listing of simple general science types. I'm using the SI standard quantities as a starting point for this. Not sure it will work, but it's a start.

7. Lou. Revision 14 has finished the restructuring of most of the material in sections 2 and 3. I am leaving the strikeouts from revisions 9-13 as a historical record and so the authors can see the original material. However, to read the document I strongly suggest turning strikeout off. I may have gone overboard on my rewriting but I think the document is now at the point that we could use it to develop a checklist for format selection. I did not address section 4 on the how to move around the grid. I am not sure it is still needed and if it is needed, I would probably divide it between section 2 and 4

8. Lou Reich Rev 15. Massive changes to give paper better organization and focus. It still needs lots of review and smoothing

9. Lou Reich, Rev 16. Provided smoothing and cleanup.

Introduction

A number of different perspectives can be used to understand the scientific data formats evolution process.

1. In this paper, .we provide and overview of scientific data and data formats and investigate the objects used by scientific data formats from two perspectives:
2. the range and complexity of the object types that can be represented in the formats, and

3. The degree to which a format supports general-purpose data objects versus data objects that are specific to a particular scientific discipline.

We seek to identify common objects and formats that span these two perspectives, and to describe how they are interrelated. The objective of the paper is to present a model for understanding different formats and assessing their utility for a variety of different activities that are performed on scientific data.

We then look at the concepts of Profiling or customizing formats from these perspectives.
1. In the final sections of this paper we present a comprehensive list and definitions of scientific datatypes in current usage to provide a common vocabulary for further discussions in this area.
2. A model for understanding the interplay between data types and scientific applications

 Scientific data is based on measurements that tend to be numeric. In order to derive the scientific information from this data one must understand several factors such as: the location (space and time), the units of the measurements and the relationships among multiple measurements. The addition of these metadata items transforms the measurement data into scientific information that can be visualized and analyzed.

Some metadata is used to aid in interpreting the computational meaning of data. This is called "structural metadata" because it describes the atomic, simple aggregate, and complex aggregate computing structures used to represent objects. Structural metadata describes how the data are formatted, and how to interpret them.

For instance, structural metadata tells us that a particular collection of 4 bytes represents an "IEEE float." Structural metadata also describe the relationships among objects, and hence is used to describe complex objects in terms of simpler ones. For instance, structural metadata can indicate how a certain collection of integers constitutes a 3-dimensional array and that they are stored in row-major order. Or how a certain collection of arrays and other structures represent a multi-resolution grid.

Another form of metadata, "content metadata,” transforms strictly CS datatypes into physical datatypes. Content metadata gives physical meaning to data by describing its relationships to the real world. Content metadata is can be varied and vast, and includes physical units, locations in space and time, physical conditions and constraints, and instrument information

A core requirement for any tool that handles scientific data is that is be able to associate both content and structural metadata with the numeric data.

2. A look at formats

We define a format as follows: a format specifies the organization of information, at some level of abstraction, in one or more byte streams that can be exchanged between systems. In this document we focus on formats designed for scientific data exchange, access, and archiving. We exclude discussion other types of containers, such as relational databases, although data types that are describe often apply equally well to databases.

Many scientific data formats are specified with a paper document describing the meanings, layout, and relationships of objects that the format supports. These specifications can be abstracted to provide a less detailed, and more easily understood, view of the supported objects and relationships. This is often referred to as the data model of the format. A high level of abstraction provides little detail. At the lowest level of abstraction that data model becomes equivalent to the format specification. GRIB and FITS, for example, specify objects down to the bit level. However not all format specifications go to the bit level. It may be left to a separate specification, or implementation, to provide this needed level of detail. All these document-based formats require applications to read and write the data to enable automated processing. The description documents are written in a Data Definition Language (DDL). There are a wide variety of DDLs ranging from English augmented with some diagrams to formal specification documents, which allow a wide variety of object types, layouts, and relationships to be described The General purpose formats of this type have different degrees of automated support. Some are simply documentation and offer no support tools, while other provide tools to assist in reading and writing descriptions of specific data sets. Some formats may have readers and writers for converting data from local storage forms to/from the general format form.

The EAST data description language can describe a sequence of repeating records where part of the record structure can vary from record to record, and where a wide variety of standard and custom data types are supported at the bit level. IDFS uses a description language as a part of its system. The PDS ODL and FITS are hybrid DDLs where binary data objects are delimited (i.e., encapsulated or referenced) and described by a set of labels. IDFS uses a description language as a part of its system. XML has recently emerged as a general-purpose markup language (i.e., embedded markup language) that, in combination with appropriate Document Type Definitions (DTD) can describe almost any character based format.

An alternative paradigm for viewing scientific information is the Object Oriented or Application Program Interface (API) approach. In this approach the actual structure of the underlying data is hidden from the data consumer and scientific information can be gained through a series of function calls (i.e. methods).

For example, the CDF format has an API for storing and accessing arrays, and there is an implementation of this API so that the API can be called by software to access data in CDF. This adds another abstraction level to a format, in which an application does not have to be concerned with how the bits are actually organized. It also means that a format, as defined here, does not have to specify unambiguously a particular organization for the bits. HDF5, for example, can store its objects in a number of ways, and indeed provides facilities for applications to replace its default layouts with ones of their own choosing

There is a good deal of overlap between Data Structure and API formats, and indeed it is common to use a single format for exchange, access, and sometimes for archiving as well. Also, it is becoming common to add an API component to a DDL based format and develop a DDL to represent the interchange/archival form or a schema specification for an API format. Examples of this include a C++/C API developed for EAST and the development of a DDL for HDF-EOS.

Regardless of whether a format has a DDL specification, an API, or both, it will have one or more associated data models that are in common use to understand its objects and their relationships. For example, a relational database has an abstraction, or data model, of a set of related tables.

In the following section we investigates the types of objects that are commonly used in scientific data models.

4. Scientific Format Data Model Objects

· The data model for a scientific format can be characterized by:

· the simple datatypes supported

· The higher level objects/interfaces that are supported

· The types of content metadata that can be associated with each data value and the constraints on the values and existence of those metadata.

This section used the computer science concepts of aggregation and specialization to discuss these characteristics.

3.1. Levels of complexity of data objects: aggregation

As we look at how scientific formats organize and support information, we find they employ a variety of data objects intended to support many kinds of information. For example CDF employs integers, reals, characters, arrays, and attributes to support any kind of information that can be usefully characterized in these ways. Some objects, such as integers, are very simple, and others, like arrays, are more complex. With formats like CDF, HDF and others, even more complex objects can be built from these, such as finite element meshes. And some formats, such as DX, explicitly support such complex objects.

These distinctions provide one useful way to understand and compare formats: by the types and complexity of the objects that they support. Table 1 describes three 'levels of complexity' for data objects, and illustrates formats that support them. Read from bottom to top, the three rows represent increasing levels of complexity, with objects at each higher level often being built out of those at lower levels.

Table 1. Levels of aggregation of objects for different formats.

Levels of complexity (aggregation)
Objects
Example formats that support some of the features or objects

(3) Complex aggregates
Raster image, irregular grid, multi-resolution grid, index, record of aggregates and simple types
DX

(2) Simple aggregates
Character string, record of simple types, array
HDF4/5 Scientific Data Sets, CDF, netCDF, PDS, FITS
(plus all of the above)

(1) Simple types/bit layouts
Number (integer, real), character, compressed value
IEEE float, XDR, ASCII-encoded number (plus all of the above)

The entries in the "objects" column should be interpreted as abstractions--this column says nothing about how objects and features are implemented in a particular format. The third column, "example formats…" refers to actual implementations of these objects.

In object-orient terms, Table 1 describes three levels of aggregation. The more complex objects tend to be built from the simpler ones. Each level provides information structures that can be used as building blocks to create structures at higher levels. For instance, integers can be combined to provide an array structure, which in turn can be used to create an unstructured grid. (Note: we use the term 'structure' here to refer to the way in which an object is implemented.)

<<Mike I cut this figure out of a paper by Lloyd Tranish. Both the figure and the words need modification but I think it adds some clarity about complex aggregations>>
Figure 6 shows sample taxonomies for the aggregation layer, which describes classes of data that can be broken down into simple fields. They may range from a series, which is merely a sequence of instances of a field to cases which can be spatially decomposed into sets of subfields such as a multizone grid or a collection of spatial partitions for parallel processing. Adding hierarchy enables a description of an adaptive mesh. Some data may be sampled over a very topologically complex mesh. In this case, it may be easier to decompose it into a set of simpler meshes, each of which is of the same class.

[image: image9.png]

The structures, semantics and operations of aggregated objects are implemented using the structures, semantics and operations of the simpler objects. The aggregated object appears to the user to have its own interface and has no responsibility to expose the interfaces of the contained objects. An aggregated object may choose to expose any of underlying objects

Organizing the measurements and associated metadata into well known structures/aggregated types can summarize many of the relationships among various measurements and metadata. For example a series of soil measurements could be represented as a table where each row of the table consisted of the lat/long coordinates, the time of measurement and the measurement value including units.

This structuring process aids the consumer of the data in the understanding and visualizing the data. In some cases more complex mathematical types (which are aggregates of aggregates) are used to represent complex physical relationships.
2.2. As the table suggests, the level of complexity of basic types, can be related to format. Formats such as XDR and the IEEE float standard support simple objects, such as standard number representations and characters, whereas the DX irregular grid is a complex object requiring several different structures and a great deal of metadata,

2.3. Scientific domain specialization

Table 1 provides no information about how we extract scientific information from any particular format. To use formats for scientific purposes, their objects, and the structures that implement them, have to be assigned scientific meaning. Some formats specify no specific scientific information, yet they provide useful computing datatypes and structures for storing scientific data, such as floating point numbers and multidimensional arrays. Others may specify very general types of scientific information, such as "a time sequence of values," and still others support very specific types of information, such as "magnetic field observations by the IMP-8 magnetometer."

The description of specialized objects in terms of more general ones is called specialization in object terminology. Specialization occurs when a new subclass is created from a more general superclass by constraining the features of the superclass in some way, and/or by extending the superclass by adding new features. This concept provides us with another useful criterion for understanding and comparing formats. Table 2 describes several 'levels of specialization 'for scientific data objects, and illustrates formats that support them.

Table 2. Levels of specialization of objects supported by different formats.

Levels of specialization
Features/
objects
Example formats that support some of the features or objects

(d) Instrument/
application-specific
Instrument X swath

Instrument X magnetic field
HDF-EOS MODIS Swath

IMP-8 Magnetometer

(c) Domain-specific
EOS swath

Electric and magnetic fields

Something from PDS.
HDF-EOS

ISTP-CDF

(b) General science
Observed image, value at a location, date/time, time series
CDF
, PDS, Flatfile3, FITS

(a) computer science
Number (integer, real), record, array, field, raster image, finite-element (FE) mesh, vector, tensor, multi-resolution grid, mesh, index
DX, HDF, CDF, netCDF, PDS,
IEEE float, XDR, ASCII-encoded number, ASN.1, XML

In table 2, the bottom level represents the same math and computer science datatypes and structures described in Table 1. Formats that support only these structures can be made to contain useful scientific information if appropriate documentation, metadata, or interpretive software accompanies them. There are computer science data formats such as ASN.1, XDR and XML that support this level of specialization.

Levels (b)-(d) in Table 2 represent increasingly specialized science datatypes and formats. One crosses the threshold into "scientific" formats when one or more physical dimensions are required by the format itself. This criterion insures that there is a physical interpretation of the information supported by the format. This may be as simple as a format providing an ability to specify units for numeric data. Another example is, an "observed image" format that requires earth based coordinates is a scientific format, whereas a pure image format such GIF is not.

The "general science" level in table 2 introduces concepts such as time and space, which are common to nearly all sciences. At this level, spatial and temporal dimensions might be represented without reference to any specific coordinate systems, so they could be applicable to any physical science domain. Time and space frequently occur as independent variables in data collections. Similarly, physical properties such as temperature and density that occur in many scientific disciplines could be represented as having the choice of many different units. For example, density could be any relationship between a volume and the number of individual items of some type found within a unit of that volume. Most of the well-known science data formats such as HDF, CDF, PDS Labels, FITS and IDFS support a minimum of this level of associated metadata.

Levels (c) and (d) represent project- or discipline-level scientific formats. They encompass increasingly specific, narrow, scientific applications, instruments, etc. Domain-specific formats contain a great deal of contextual information, but provide some generality, so that data from different instruments, experiments, simulations, etc, can be encapsulated in the same format. For example in space physics density becomes number of charged particles/cubic meter. HDF-EOS and ISTP-CDF are examples of domain-specific formats in that each is designed to be used for storing data generated by a variety of different instruments.

Formats at the top level, such as the IMP-8 magnetic field format and the HDF-EOS MODIS Swath, are specific to an instrument or other application. For example <<<Need Specifics about IMP8Magnetometr>>>>>

The choice of exactly four levels is somewhat arbitrary, but believed to be useful. The important point is that each level can play a role, and that the use of levels can have conceptual, engineering, and other benefits.

2.4. A big advantage of viewing formats in terms of domain specialization is that objects at each level can be built out of those on the lower levels. In object terms, a more specialized object can inherit the semantics and methods of the more general objects. This inheritance can have enormous advantages in terms of software engineering, because it may permit the higher levels to re-use methods at the lower levels.

2.5. Combining complexity and domain-specialization

We have described two ways to distinguish among scientific formats: by level of aggregation and by level of specialization. Both views are useful in understanding the evolution and use of formats, and there is an interesting interplay between the two views, as illustrated in Table 3

Specialization

(a) Math & Computer science
(b) General science
(c) Domain-specific
(d) Instrument/
app-specific

Aggregation
3. Complex aggregate
Irregular grid, multi-resolution grid, quad trees
Wavelet-based image
Wavelet-based astro image, FE mesh of materials
Wavelet-based image from instrument X,
FE mesh for material X

2. Simple aggregate
Character string, record, array, raster image
date/time, spatial coordinates, observed image,
Geospatial coordinates, astro raster image
Coordinates of instrument X

1. Simple types
Integer, real, bit string, character
Density
Solar wind density
Imp-8 solar wind density

Many formats span the levels of aggregation in Table 1, at least partially. CDF, netCDF, FITS and HDF all support simple datatypes as well as certain aggregates, although they don’t all support exactly the same simple types and aggregates. The DX format supports complex aggregates such as irregular grids. Even though formats like HDF and CDF do not explicitly include third level objects, complex aggregates, it is not uncommon for users to create high-level profiles that include these.

Some of these same formats also span different levels of specialization (Table 2). CDF, FITS and PDS, for instance, are designed to be useful general-purpose formats, but at the same time provide a certain scientific context. CDF includes a standard time datatype ("epoch"), a general scientific concept. Similarly, the FITS specification provides datatypes and aggregates that can be organized to apply to a variety of different application domains, but it also contains definitions that are very specific to astronomy.

We'll now look at formats in terms of how they span the cells in Table 3, which combines the two dimensions of aggregation and specialization. Figure 1a is a direct translation of Table 3 onto a graph describing levels of complexity and levels of specialization. A given format can be described in terms of what sectors on the graph describe its datatypes and structures. This is illustrated in Fig. 1b, where HDF4 and HDF-EOS are described. In this example, HDF4 is seen to contain math and CS types only, whereas HDF-EOS supports simple and complex aggregates in the general domain of earth science.

[image: image1.png]Fig. la. Data type complexity vs. levels of domain specificity.

Wavelet-based Wavelet-based
® Irregular grid, Wavelet-based astro image, FE image from
C““‘epgl;‘e multi-resolution image, FE mesh, mesh of instrument X,
P grid, quad tree polyhedron materials FE mesh for
g material X
Z
]
<
» Character Date/time, Geospatial)
9] @ string, record, spatial coordinates, Coordinates of
S Simple array, coordinates, astro raster instrument X
E aggregate raster image observed image image
e
S
2
g Ints I
= nteger, real Density Solar wind Imp-8 solar wind
] M bit string, density density
5 simple character

(a) math/CS (b) general () domain (d) instrument/app-
science specific specific

Levels of application domain specificity

[image: image2.png]Fig. 1b. Comparing two formats in terms of complexity and domain specialization.

®
Complex
aggregate

S

HDF4

@
Simple
aggregate

HDF-EOS

@

simple

Complexity of math/CS data type:

(a) math/CS (b) general () domain (d) instrument/app-
science specific specific

Levels of application domain specificity

4. Format Customization - Profiles

Many formats are designed specifically for a particular science or application, others are general-purpose formats designed for a wide variety of uses, and others are somewhere in between. The formats listed at level (a) in Table 2 ("computer science") are general purpose formats. Table 2 lists several formats, such as HDF-EOS and ISTP-CDF, that are implemented entirely from objects in these general formats. HDF-EOS is implemented using the HDF format, and ISTP-CDF using CDF. We call formats like HDF-EOS and ISTP-CDF profiles. We can analyze the changes to the data model required by a new profile using the techniques discussed in the previous section.

ISTP - CDF is an example of a profile that is created by specializing the objects in the general CDF format. In this case, profiles consist of special rules and guidelines that constrain the use of a more general format, such as what metadata fields and values to use, and which format-supported data types and structures to use in what circumstances. There are no new Object types or aggregates introduced so the only difference between the diagrammatic representation of CDF and ISTP-CDF is the fact that the level of domain specification has increased resulting in a shift of the shaded area from the computer science area to the domain specific area.
Due to the fact that only specialization was used, any software that can visualize or analyze CDF formatted data will return accurate results when operating of ISTP CDF data.

<This figure is used for fill, need a CDF/ISTP_CDF Figure>

[image: image3.png]Fig. 2(b). Where CDF/netCDF might fit within the levels.

@ Irregular grid, Wavelet-based Wavelet-based Wavelet-based
Complex multi-resolution image, FE mesh, astro image, FE image from

el;me grid, quad tree polyhedron mesh of instrument X,
g materials FE mesh for
B CDF/netCDF material X
= CDF
S Geospatial Coordinates of
S @ sp coordinates, instrument X
= simple coordinates, astro raster
= aggregate observed image image
g
e
S
2
]
= Density Solar wind Imp-8 solar wind
g [¢) density density
S simple

(@) math/CS (b) general (¢) domain (d) instrument/app-
science specific specific

Levels of application domain specificity

HDF-EOS is an example of a profile derived by both specialization and aggregation. In addition to specifying rules and guidelines to constrain the more general HDF format, the HDF-EOS profile specifies three earth-science datatypes: a swath, a grid, and a set of geo-referenced points. All three of these datatypes are aggregate structures, implemented by combining HDF arrays, groups, and attributes
. Profiling by extension adds semantics to existing object types or combinations of object types in essence creating new object types. Since an object in such a profile may be constructed out of more than one object in the more general format, profiles may contain more complex objects than those of the formats from which they are derived. This is shown in figure 3 by the shift in the shaded sectors in both the x (specialization) axis and in the y (complexity/aggregation axis).

Since HDF-EOS introduces new object types and associated methods in addition to those specified in HDF, any datasets using those types could not be correctly/completely processed by software that implemented the HDF4 APIs.

 EMBED Word.Picture.8

Guidelines on Profile Development
A format that facilitates building customized profiles typically consists of a set of general objects, a mechanism to associate metadata with these objects and perhaps a specification of the layouts for those objects, with the idea that those objects could be configured and described in different ways to apply to different applications. In a sense, this type of format can be thought of as supporting a family of customized formats.

 Some general purpose formats also provide libraries with features that are generally useful, starting with the ability to read, write and convert primitive types and aggregates, and including such services as data compression, tiling, access to alternate storage formats, and parallel I/O. Furthermore, general-purpose libraries are often implemented on a variety of machines
As "formats on top of formats," profiles can combine the context of a new abstract domain with the features and services of a domain-free general-purpose format. This approach lets general format developers concentrate their efforts on providing features at one level that can be exploited at higher levels. By using HDF, for instance, the HDF-EOS format is able to exploit such features as data compression, tiling, and machine portability without having to re-invent, implement, and maintain them in a new format. By using CDF, the CDF-ISTP data model automatically supports the concept of a collection of related independent and dependent variables, a mathematical concept that is very useful for describing such things as the relationship between time, space, and observations.

General-purpose formats tend to be larger and more complex, requiring greater software development and maintenance costs. If a general format is used to support many different profiles in different disciplines, these costs are spread out and can ultimately result in cost savings, but this requires coordination among a variety of participants.

Although higher level objects frequently are implemented in terms of one or more lower level objects, a format (and API) supporting a higher level object may or may not make lower level objects independently available for the user. Excluding the APIs for the lower level objects can simplify the programmer interface and avoid confusion. For instance the HDF-EOS API does not have methods for writing general HDF objects like palettes and images
While there are many advantages to developing domain specific profiles on top of general-purpose scientific protocols there are also significant risks with this approach. The most significant risk is the stability of the underlying general-purpose format. When a project or discipline creates a profile using an API based format there is a risk that the general-purpose format will cease to support some of the required interfaces in future releases. In this case the discipline will be forced to provide resources to maintain the profile libraries and software configuration and interoperability with other users of the same general-purpose format will degrade over time. Another problem is that the process of creating extensions to the general-purpose formats may find hidden problems with the implementation of underlying datatypes. The resources required to fix these problems could be very high and the provider of the general-purpose format may not be willing to provide those resources.

The probability of encountering these problems is much higher when the profile uses aggregation to create new datatypes. However even when a domain simply specializes a format the ownership and maintenance issues may cause problems.
<<<<<<End of Former Chapters 1-3>>>>>>

3 ISO/IEC 11404 datatypes

<<need to revise in view of recent changes>>
To improve our ability to compare formats and to think about the evolution of formats, it would be useful to be more explicit about the types of objects that fall into the various levels of complexity and domain-specificity. For level 1a and 1b types we draw from the ISO/IEC standard (ISO/IEC 11404: 1996 (E)) for "Language-independent datatypes," which provides a rich and rigorously defined set of datatypes for programming languages that maps very well to format datatypes at this level. Appendix A contains a listing of most of the ISO 11404 datatypes.

In the next two sections, the appropriate ISO 11404 datatypes are mapped to the format levels that were defined above. Some format types are listed that are not included in the ISO 11404 standard, such as attribute and group.

4.1 The ISO 11404 standard does not deal with how these datatypes are represented, since representation is a language-specific feature. With formats, as with languages, representation can be very important, however. <<But we have to figure out how best to cover this material.>>

4.2 Level 1(a): simple types/bit layout

Level 1a consists of basic types that are used to represent individual values, and as elements for aggregate and other higher level types. Table 2 lists the ISO 11404 types that seem to represent level 1
.

Type
Rough definition
Examples/comments

Boolean
Math type whose values are "true" and "false
E.g. "true", "false"
8.1.1

Enumerated
Finite collection of distinguished values having an intrinsic order
E.g. "orange", "apple", "pear", where orange<apple<pear
8.1.3

Character
Family of datatypes whose value spaces are character-sets
ASCII most common, but other character sets may need to be considered.
8.1.4

Integer
Math type comprising exact integral values
Many precisions supported. Sometimes signed and unsigned are distinguished. (Should these be enumerated?)
8.1.7

Scaled
Value space is a subset of the rationals, each with a fixed denominator, but possessing the concept of approximate value.
Used by some formats to save space.
8.1.9

Real
Approximations of the math type "real numbers."
Size and precision can be important in scientific applications. (Should these be enumerated?)
8.1.10

Complex
Approximations of the math type "complex numbers."
Often not a primitive type, but represented by a predefined convention.
8.1.11

Void
Represents an object whose presence is required, but carries no information.
Perhaps this is the same as a fill-value."
8.1.12

Pointer
Values constitute a means of reference to values of another datatype.
There are a wide variety of ways to define and implement pointers. It may be useful to delineate some of these.
8.3.2

Bit
Represents the finite field of two symbols "0" and "1".

10.1.3

Bit string
Datatype of variable length strings of binary digits.

10.1.4

Octet string
Datatype of variable length encodings of 8-bit codes.

10.1.8

Private
AKA "blob"
An application-defined value space and operation set that are intentionally concealed from certain processing entities. There is no denotation for a value of a private datatype.
Makes it possible for a non-standard type to be passed between two parties that understand it by a third party that does not understand it. (See appendix for more details.)
10.1.9

Object identifier
Values that uniquely identify objects in a communications protocol.
See ISO/IEC 11404 gives a precise and thorough definition.
10.1.10

Optional
A generator that effectively adds the "nil" value to the value space of a base datatype.
Level 1a when it represents a scalar value, but level 1b when it represents a complex structure.
10.2.4

4.3 Level 2(a): simple aggregates

The standard defines an aggregate datatype as "a generated datatype each of whose values is, in principle made up of values of the component datatypes." We use the term "simple aggregates" to distinguish these from more complex aggregates such as multi-resolution grids.

Type
Rough definition
Examples/comments

Record
Heterogeneous aggregation of values of component datatypes, each aggregation having one value for each component datatype, keyed by a fixed "field identifier."
There are often restrictions on how complex the fields of a record can be, but in principle a field can be any datatype. In general, fields do not have to occur in any particular order, but many formats require a fixed order.
8.4.1

Set
Value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the mathematical set.
What is the utility of this for scientific data?
8.4.2

Bag
Collection of instance of values from the element datatype. Multiple instance of the same value may occur, and ordering of elements is not significant.
This probably corresponds to the HDF5 grouping structure.
8.4.3

Sequence
Ordered sequence of values from the element datatype. The ordering is imposed on the values and not intrinsic in the underlying datatype. The same value may occur more than once in a given sequence. The only way to write to a sequence is to append; there's no replace operation.
Differs from bag in that the ordering is significant. Sequences of scientific records (e.g. observations) are frequently implemented using this datatype.
Is this the same thing as an array with an unlimited dimension?

Is this the same as our general "variable length type."
8.4.4

Array
Values are associations between the product space of one or more finite datatypes, designated the index datatype, and the value space of the element datatype, such that every value in the product space of the index datatypes associates to exactly one value of the element datatype.
Index datatypes correspond to dimensions. Some formats allow dimensions to grow in size after creation, and as a result they are sometimes treated like a sequence. In files, elements are generally stored contiguously, but other organizations are possible.
8.4.5

Table
Unordered collection of values in the product space or one or more field datatypes, such that each value in the product space represents an association among the values of its fields.
Note that the ISO definition specifies "unordered." This definition is meant to produce a datatype that corresponds to the SQL concept of "table."
8.4.6

Defined datatype
A datatype defined by a type-declaration, denoted by a type-reference.
This makes it possible to rename an existing datatype or name an existing datatype that have a complex syntax. This can be useful for applications that want to store complex datatypes by name in a file. It is also used by ISO/IEC 11404 to define other common datatypes (see next section).
8.4.

Character string
A family of datatypes that represent strings of symbols from standard character sets.

10.1.5

Octet
The datatype of eight-bit codes, as used for character-sets and private encodings.

10.1.7

Optional
A generator that effectively adds the "nil" value to the value space of a base datatype.
Level 1a when it represents a scalar value, but level 1b when it represents a complex structure.
10.2.4

Attribute
A (name, value) pair attached to some other datatype to provide additional meaning.
In files, attributes are usually only attached to certain objects. Although the "value" is usually a scalar type, it could be any of the above-named types.
none

Group
An organizing structure that contains other data structures.
<< May be equivalent to a bag or set, depending on its semantics.>>
none

4.4 Level 3(a). Complex aggregates

10. This category is meant to describe types that build on level 2 types, either by combining level 2 structures or by providing new access methods to level 2 structures. It is difficult to define this category in pure computer science terms, because many of its structures are created with for specific applications, and some of are unique to a particular application. Although the category is loosely defined, its members share one or more of the following characteristics.

11. They are made up of other aggregate and simple structures.

12. They may change their size or shape after initial instantiation.

13. Their methods may be more complex than those of the simple types and simple aggregates.

14. Different parts may have different size, shape, or resolution.

15. Many of the formats that we are examining do no directly support these types, but these types are sometimes created using the formats. For example, several applications create irregular grids using HDF and netCDF, although neither format directly supports irregular grids. Still, there are, such DX, that do define many complex aggretates as primitives.

Type
Rough definition
Examples/comments

Stack
Same as a sequence structure, except the insertion operation puts values at the beginning of the sequence (push), and a removal operation takes values from the beginning of the sequence (pop).
Same as a "last in first out" (LIFO) list.
10.2.1

Queue
Same as a sequence structure, except the insertion operations puts values at the beginning of the sequence, and a removal operation takes values from the end.
Same as a "first in first out" (FIFO) list
none

Index
This defines a class of level 3 structures in which an "index structure" is first searched for some key value, whence the location of the desired data can be determined.
An index structure is used to support efficient search. It supports essentially the same insertion, deletion, and selection operations as a table. A given search structure may be categorized according to or or more of three general types of access: random access, multi-view, and indexed-sequential access.

Level 3 structures that support indexing include trees and hash tables.
None

Tree index
A recursive sequence structure in which every member is either a tree or a "leaf," where a leaf can be any datatype.
Trees are commonly used for data that changes frequently. Trees are common index structures. A B+ tree, which uses a B-tree for an index, is designed for indexed-sequential access.
10.2.2

Hash index
A table structure in which the position of a key k is determined by a "hash function," h(k).
Hash tables can provide very fast random access to records based on some key.
None

None

Mesh
A mesh is an n-dimensional spatial representation of data consisting of a topology and a geometry. The topology is defined by a set of vertices and connectivity information describing cells. The geometry is given by the location of the vertices and cells in space.

Types of mesh include:

16. Structured mesh (grid)

Uniform

Rectilinear

Irregular

Multi-resolution

Unstructured
Meshes typically involve two data structures. One structure describes the location of all of the points in the mesh. A second structure describes the connectivity that defines the cells that make up the mesh.

Another structure describes the data assigned to the mesh. Data are assigned either to vertices or cells in the mesh.

None

Grid (structured mesh)
17. A mesh defined in terms of Cartesian coordinates consisting of cells that are quadrilaterals (2-d), hexahedra (3-d), etc., whose opposite sides are not necessarily parallel. In the 2-d case, the topology of a grid is defined by 2 integers, X and Y, that indicate the number of vertices, X*Y, and cells, (X-1) * (Y-1). The geometry is defined by an array (sometimes implied) of x and y coordinates, one for each vertex. Higher dimensions are defined simiarly. 3-d and higher cases are defined similarly.

None

Uniform grid
18. A grid in which each cell mesh is a rectangle of two or higher dimension. All cells have the same width and the same height.
The grid can be defined by providing a start point and delta value for each axis.

In 2-d, a uniform grid is visualized as a set of uniformly spaced horizontal lines and uniformly spaced vertical lines.
None

Rectilinear grid
A grid whose geometry is defined by a 1-d "coordinate array" ai for each axis i. ai is the list of the values for the ith coordinate of the set of vertices, in increasing order. The set of vertices is the cross-product of the coordinate arrays.
Each cell of a rectilinear grid is a rectangle.

E.g. for a 2-d grid, the geometry is defined by two coordinate arrays x and y. x is the list of abscissas of the vertical lines, and y is the list of ordinates of the horizontal lines.
None

irregular grid
A grid whose geometry is defined by listing the vertices of every point in the grid.
The cells are quadrangles, hexahedra, etc., whose opposite sides are not necessarily parallel.

E.g. for a 2-d grid of size m-by-n, m*n vertices are provided.
None

Multi-resolution grid
A grid whose resolution varies at different locations.

None

Unstructured mesh
A mesh whose topology is defined by the number of nodes, the number of cells, and lists of the nodes that comprise each cell (connectivity lists). The geometry is defined by the location of the nodes.
Many unstructured meshes consist of a single type of cell, such as a triangle or hexahedron.

None

Discrimi-nant
record
Same as a record type, but the record structure many vary in content and length based on values (the discriminant) stored within in the record.
Not listed as an ISO 11404 type, but this is a type that occurs in some applications.
none

4.5 Level 1(b). Simple science types

Level 1(b) types are atomic types that have general applicability in many scientific domains. They include information with a physical or temporal (as opposed to purely computational or mathematical) interpretation. Of the ISO 11404 types, only two seem to fit well into this category, "date and time" and "time interval."

For others we turn to the International System of Units (SI), which defines seven base physical quantities, all of which can be represented using atomic datatypes. (http://physics.nist.gov/cuu/Units/index.html) In addition, there is a much longer list of SI derived quantities, which are defined in terms of the the seven base quantities.. SI's definition of a quantity is

A quantity in the general sense is a property ascribed to phenomena, bodies, or substances that can be quantified for, or assigned to, a particular phenomenon, body, or substance. Examples are mass and electric charge.

The following table lists the two ISO 11404 types, the seven SI base quantities, and a few derived quantities.

Type
Rough definition
Examples/comments

Date-and-time
Family of datatypes whose values are points in time to various resolutions
Resolutions: year, month, etc.
8.1.6

Time interval
One of the seven basic SI quantities.
ISO 11404: A family of datatype representing elapsed time in seconds or factions of a second.
The SI standard unit: second.
ISO 11404: A form of scaled datatype. E.g. (second, 10, 3) represents 3 milliseconds.
10.1.6

Length
One of the seven basic SI quantities.
Standard unit: meter

Mass
One of the seven basic SI quantities.
Standard unit: kilogram

Electric current
One of the seven basic SI quantities.
Standard unit: ampere

Temperature
One of the seven basic SI quantities.
Standard unit: kelvin

Amount
One of the seven basic SI quantities.
Standard unit: Mole

Luminous intensity
One of the seven basic SI quantities.
Standard unit: candela

Volume
An SI derived quantity.
Standard unit: square meter.

Velocity
An SI derived quantity.
Standard unit: meter per second

Acceleration
An SI derived quantity.
Standard unit: meter per second squared

Mass density
An SI derived quantity.
Standard unit: kilogram per meter squared

Material beyond this point (except Appendix A) is old and needs to be revised.
4.6 Level 2(b). Aggregate - general science

1. Element types (triangle, tetrahedron)

2. Field value types (vector, tensor)

19. <<<What about "variables?" I need to find a place for them, and I think this is it. Here's a related comment by Don, which I will work from: "One other point, with regard to CDF and variables. CDF documentation does refer to variables, including rvaraibles and zvariables. I think the issue here is how are they defined beyond the fact that they are arrays, and do we have other, computer science, terms to refer to them.">>>

3. Spatial context information

4. Bounding box (identifies the maximum and minimum extent of any associated multidimensional array)

5. Coordinate systems

20. Simple Image and color lookup table

4.7 Level 2c. Instrument-specific

6. Finite element mesh

7. Structured

8. Unstructured

9. Multi-resolution (hierarchical)

21. Sparse and dense fields (mappings to coordinate systems, interpolation schemes)

22. Image with color lookup table

23. Indexed color lookup table

24. are specific to some scientific domain, instrument type, etc. In this categorization, the categories can be narrow (Landsat 7) or broad (space science). We might wish to break this into two levels to cover this difference.

25. Earth science (Swath, grid, point)

26. Space science (DC fields, particle fluxes)

27. GIS (vector data; raster data)

28. Product design

29. Medicine

4.8 Etc.

4.9 Library services

In writing these notes, I have been tempted several times to mention the services that are provided with the various formats. Several of the formats under discussion come with APIs and libraries for reading and writing them, as well as other access services, like subsetting. Indeed, an I/O library seems to be a requirement for those formats that are very general and provide a lot of different options, formats like HDF, netCDF and CDF. They are just too complicated to decipher to assume that an individual could easily write readers and writers for them. On the other hand, there are formats, like FITS and PDS, that seem to provide both simplicity and many good options.

Another reason for libraries is to ensure that formats are always written correctly, and that a given object is written in a consistent way. This advantage applies to both basic formats and profiles.

5. More old stuff

6. An annotated glossary

6.1 I thought it would be useful, not just for this piece, but for our discussions in general, to begin to define some of the terms we are working with. This glossary is a first pass at doing that. It still is missing many terms, and it also ranges beyond the specific "levels" discussion that got it started.

6.2 Types, structures and objects

Some of the ideas for these terms came from "A Reference Model for Scientific Information Interchange" (Reich, Sawyer, Davis).

6.2.1 A datatype is a classification identifying one of various types of data, as floating-point, integer, or Boolean, stating the possible values for that type, the operations that can be done on that type, and the way the values of that type are stored. Datatypes specify the set of values from which a variable, constant, function, or other expression may take its value.

6.2.2 Datatypes

30. A primitive datatype is one whose values are usually treated as a single entity with well understood semantics in the computer science domain. Primitive datatypes include

31. An ASCII number is a textual representation of an integer or decimal value. It size and format can sometimes vary from one value to another.

32. Standard integer and floating point types. These are binary fixed-length numeric types that can normally be operated on in hardware, such as "eight-bit signed two's complement little endian integer" and "32-bit IEEE float."

33. Non-standard integer and floating point types. These are fixed-length numeric types that are specially defined by users or applications. They can normally be operated on only in software. They offer advantages such as space savings that are worth the extra costs and troubles that they bring.

34. String: A sequence of characters that are treated as a unit. Strings can be fixed-length or variable-length.

35. Boolean: a type that can have one of two values, "true" or "false."

· Special types. : enumerated type, pixel, pointer, and opaque. These are less well well-defined types, but have the following basic meanings:

· Enumerated type: a type whose value is selected from a defined list of values.

· Pixel ("picture element"): the smallest discrete unit in an image, either on a screen or stored in memory. A pixel may contain one or more bits of information, representing the brightness or color of the image at a point and possibly including color information. (Adapted from The Free On-line Dictionary of Computing.)
· Pointer: a value that is understood as a reference to information residing at some other location.
· Opaque type: a sequence of bytes with no associated semantics, as far as the format is concerned.
36. Record (a.k.a. compound or composite datatype): An ordered collection of related elements. Each element is a (name, value) pair, where the value may be any allowable type. A record may be allowed to contain other records as the value of one or more of its elements. (Adapted from ODMG definition of built-in type "structure.")
The elements of compound types are sometimes called "fields," but this can be confusing because of the scientific meaning of the term. Vectors, tensors, and other datatypes can be implemented using records.

Other useful definitions related to types:
A fixed-length datatype is a datatype with the constraint that of every instance in a structure or file occupies a specific number of bits. An example of a fixed length datatype is "eight-bit signed two's complement integer"

6.2.3 A variable-length datatype is a data type whose size can vary from one instance to another. An example of a variable length type is a variable length string. The distinction between a variable length type and a variable length array is sometimes murky, and often boils down to the operations that can be performed on each. For instance, a variable length string can often be treated as an atomic type when an array cannot.

6.2.4 More complex types

37. A composite data type is a collection of one or more related instances of the available PDTs, stored and accessible as a single structure by readers and writers of a file. Aggregates generally correspond to the simple data structures supported by most languages, such as arrays, tables and trees. They also include grouping structures, such as the HDF4 vgroup. CDF and netCDF variables are aggregates, as are HDF4 SDS', but the fact that they have associated coordinate systems and other metadata gives them meaning beyond what is meant by a pure aggregate.
The ODMG's Object Database standard uses the term "collection" to define aggregates. There are four collection types: set, bag, list, array. An earlier version of the standard had an object type called "structure," which may have been roughly equivalent to a group. It might be worth looking at ways to harmonize the types that are defined here with the ODMG's approach.
The following aggregates are listed in our "levels" taxonomy.

38. Array: an ordered collection of identically typed data items distinguished by their indices (or "subscripts"). The number of dimensions an array can have depends on the language, format, etc., but is often unlimited. The sizes of an array's dimensions may be fixed, or they may be explicitly or implicitly increased after its creation.
A single data item could be considered as a zero-dimensional array. A one-dimensional array is also known as a "vector." Some data models permit only one-dimensional arrays, with higher dimensions achieved by forming arrays of arrays. For instance in the C language an N-dimensional array is actually a vector, each of whose elements is an N-1 dimensional array.
Elements of an array are usually stored contiguously, but other organizations are possible. Languages differ as to whether the leftmost or rightmost index varies most rapidly, i.e. whether each row is stored contiguously or each column (for a 2D array).
Arrays are appropriate for storing data which must be accessed in an unpredictable order, in contrast to "lists," which are best when accessed sequentially.

39. List: An ordered collection of elements of a given type. Lists differ from arrays in that elements may be removed from a list, shortening the length of the list. Because of this, the relative position of a particular list element may change.

40. Table: An collection of records. Depending on the operations allowed, a table may be an array or records or a list of records.

41. Selection region: a part of certain types of aggregate. A selection region for a multidimensional array is typically a smaller array that has the same dimensions as the array. This is sometimes called a hyperslab.

42. Group: An organizing structure that contains other data structures. A group may be instantiated in a number of different ways. For instance as a list of pointers, where each pointer refers to some structure.

43. Image: Data representing a two-dimensional scene. A digital image is composed of pixels arranged in a rectangular array with a certain height and width. (Adapted from The Free On-line Dictionary of Computing.)

44. Color lookup table (a.k.a. color palette): a table that determines how to convert pixel values to physical colors represented by a color model, such as RGB triplets. A common example would be a palette of 256 colors (i.e. addressed by eight-bit pixel values) where each color can be chosen from a total of 16.7 million colors (i.e. eight bits output for each of red, green and blue). (Adapted from The Free On-line Dictionary of Computing.)

45. An attribute is a (name, value) pair that helps give meaning to some other structure. Although the "value" part of an attribute is usually a scalar value, it could be any of the above-named types.

46. Some other definitions that describe more complex types and how we organize them.

6.3 A compound aggregate is a collection of aggregates that implements a data structure that is useful for some application. For instance, two tables may be combined to describe record data in a way that is easy and fast to search and access. CDF and netCDF have a nice way of storing and accessing related variables. Such a collection is an example of a compound aggregation.

6.4 Files and related things

47. A data object is a structure made up of datatypes and aggregates that has meaning within some application domain. Object types may be included in the specification of a file format (as in the case of a domain-specific file format), or they may be specified at a higher level, by a particular application of a file format (as in the case of HDF-EOS). By this definition, pure domain-specific file formats do not directly support aggregations, but rather support objects. That said, it is possible to store aggregations in most domain-specific format. For instance GRIB, which is designed for storing meteorological data, can be used to store large arrays of any kind of data.

48. Structural metadata is descriptive information about data types and aggregations that is sufficient to allow a reader of the data to interpret the value or values that the data represents. We assume that structural metadata is available in some form for all files.

49. A file header is a structure that provides useful information about the contents and organization of the file. Typically a header is stored at the beginning of a file, but our definition does not require this.

50. A file is a collection of types and structures, and may include a file header.
This definition presents some problems. The kinds of things we would like a file to be go beyond what we normally think of as a file. I found this discussion of the definition of "file" in the "Free Online Dictionary of Computing: "[The] prototypical file has these characteristics:

It is a single sequence of bytes (but consider Macintosh resource forks).

It has a finite length, unlike, e.g. a Unix device.

It is stored in a non-volatile storage medium (but see ramdrive).

It exists (nominally) in a directory.

It has a name that it can be referred to by in file operations, possibly in combination with its path. "

Here is a pair of definitions that might help alleviate the problem:

A file is a collection of types and structures with a name that it can be referred to by in file operations, is stored as a sequence of bytes, is stored on non-volatile storage, and has finite length,

51. A virtual file is a file with the following exceptions: it can exist in a volatile storage medium (e.g. in memory), its components can be distributed among more than one device, and it can have unspecified length (e.g. a UNIX device).

52. A file format is an unambiguous specification of how primitive, compound and aggregates are organized in a file, sufficiently detailed to allow a reader or writer to be written for accessing all of the data in the file.

53. A file format is simple if it consists only of primitive objects and datatypes, stored in some externally-defined order and representation. The ASCII export format for Microsoft Excel is a simple format; it stores a simple array of numbers in an easy-to-read form. Simple formats often support just one type of aggregation, but they could consist many structures, such as of a sequence of 2D arrays or images, a table and an image, etc.
Simple formats have the enormous benefit that it is easy to write readers and writes for them. If there is no compelling reason to do otherwise, it is probably best to store data in a simple format.

54. A file format is self-describing if it contains information about how the primitive objects and datatypes are to be interpreted. For instance, a format like FITS, with a header that describes the datatypes and dimensions of its images is self-describing. Self-describing formats are useful when the there is great variability in structure of data.
This is another difficult thing to define. When we think about different file formats we see a continuum of self-describing-ness. Furthermore, every file is self-describing in the sense that you have to examine its contents to understand its meaning. On the other hand, no file is completely self-describing because you always need some external information or assumptions in order to decipher the contents of a file.

55. A domain-specific file format is one that applies to a particular application domain, such as space science, meteorology, or moving pictures.

56. A general purpose file format is one whose primitive objects and datatypes do not apply to any particular application-specific context. General purpose formats are useful when the data needs to be shared among many different application domains, or when there is useful, general-purpose software for working with the data, software that might span many different domains and therefore need the self-description to help decipher any particular instance of the data. General-purpose formats can also be useful when it is desirable to organize the same basic data differently according to how the data might need to be stored or accessed.

57. An object store file is a file that is used for storing and accessing objects. In the OO world we might call an object store a "container object."

58. A profile is a file specification that includes data objects and metadata specific to a particular application domain.

Appendix A
ISO/IEC 11404

A.1 The ISO/IEC standard (ISO/IEC 11404: 1996 (E)) for "Language-independent datatypes" provides a rich and rigorously defined set of datatypes for programming languages that maps very well to format datatypes at this level. This appendix lists many of the datatypes described in the standard.

A.2 Some definitions from ISO/IEC 11404

59. Here are some useful definitions and other comments from the ISO/IEC 11404:1996(E) document, Information technology--Programming languages, their environments and system software interfaces--Language-independent datatypes.

60. A datatype is a set of distinct values, characterized by properties of those values and by operations on those values.

61. A value space is a collection of values for a given datatype. The value space of a given datatype can be defined in one of the following ways:

Enumerated outright

Defined axiomatically from fundamental notions

Defined as the subset of those values from some already defined value space which have a given set of properties

62. Defined as a combination of arbitrary values from some already defined value spaces by a specified construction procedure.

63. Datatype properties

Equality

Order

Bound

Cardinality

Exact and approximate

64. Numeric and non-numeric

65. Primitive and non-primitive datatypes

A primitive datatype is one which is defined ab initio without reference to other datatypes.

66. A generated datatype is one what specified, and partly defined, in terms of other datatypes.

67. Atomic and aggregate

An atomic datatype has values which are intrinsically indivisible.

An aggregate datatype has values that can be seen as an organization of specific component datatypes with specific functionalities.

Note: all primitive datatypes are conceptually atomic. Some generated datatypes are conceptually atomic.

68. An aggregate data type has the ordering property if an only if there is a canonical first element of each non-empty value in its value-space. (This allows us to talk about the "first element" in an array, for instance.

69. Homogeneity

An aggregate datatype is homogeneous if an only if all components must belong to a single datatype. A component datatype of a homogeneous datatype is called the element datatype. selves

An aggregate datatype is heterogeneous if different components may belong to different datatypes.

70. Note: An aggregate datatype is homogeneous even if element datatype is itself heterogeneous.

71. Size

The size of an aggregate-value is the number of component values it contains.

The size of an aggregate datatype is fixed if and only if all values in its value space contain the same number of component values.

72. The size of an aggregate datatype is variable if different values of the aggregate datatype may have different numbers of component values.

73. Access method

An access method for an aggregate is the property that determines how component values can be extracted from a given aggregate-value.

An aggregate datatype has a direct access method if and only if there is an aggregate-imposed mapping between values of one or more "index" (or "key") datatypes and the component values of each aggregate value. Such a mapping is required to be single-valued, i.e. there is at most one element of each aggregate value which corresponds to each (composite) value of the index datatype(s).

3 The dimension of a datatype is the number of index or key datatypes the aggregate has.

4 ISO/IEC 11404 datatypes

74. The following datatypes are based on that standard. The standard specifies the following categories of datatypes:

75. Primitive type: defined either axiomatically or by enumeration. E.g. integer; character.

76. Subtype and extended type: derived from an existing datatype by restricting the value space to a subset type while maintaining the same operations. E.g. range subtype. (These are not included in the discussion, but we may want to add them later.)

77. Generated type: defined by the application of datatype generator to one or more previously defined types. E.g. pointer; procedure.

78. Aggregate type: generated type each of whose values is made up of values of the component datatypes, in the sense that operations on all component values are meaningful. E.g. array; record.

79. Defined type: can be derived from other types and generators, but are treated as primitive types. E.g. character string; bit.

5 The ISO/IEC 11404 does not deal with how these types are represented, since representation is a language-specific feature. With formats, as with languages, representation can be very important, however.

6 ISO/IEC 11404 primitive types

Certain ISO/IEC 11404 primitive datatypes have been omitted because they rarely, if ever, occur in formats. These are state, ordinal, and rational.

Type
Rough definition
Examples/comments

Boolean
Math type whose values are "true" and "false
E.g. "true", "false"
8.1.1

State
Family of datatypes, each of which comprises a finite number of distinguished but unordered values.
E.g. for use in switch statements. Probably not relevant to scientific data formats.
8.1.2

Enumerated
Finite collection of distinguished values having an intrinsic order
E.g. "orange", "apple", "pear", where orange<apple<pear
8.1.3

Character
Family of datatypes whose value spaces are character-sets
ASCII most common, but other character sets may need to be considered.
8.1.4

Ordinal
The infinite enumerated datatype consisting of the mathematical values "first," "second," etc.
Is this used in any format?
8.1.5

Date-and-time
Family of datatypes whose values are points in time to various resolutions
Resolutions: year, month, etc.
8.1.6

Integer
Math type comprising exact integral values
Many precisions supported. Sometimes signed and unsigned are distinguished. (Should these be enumerated?)
8.1.7

Rational
The "rational numbers."
Number of the form signed-number/[number], where number cannot equal zero.
8.1.8

Scaled
Value space is a subset of the rationals, each with a fixed denominator, but possessing the concept of approximate value.
Used by some formats to save space.
8.1.9

Real
Approximations of the math type "real numbers."
Size and precision can be important in scientific applications. (Should these be enumerated?)
8.1.10

Complex
Approximations of the math type "complex numbers."
Often not a primitive type, but represented by a predefined convention.
8.1.11

Void
Represents an object whose presence is required, but carries no information.
Perhaps this is the same as a fill-value."
8.1.12
7
8 ISO/IEC 11404 generated types

The ISO standard defines a datatype generator as a conceptual operation on one or more datatypes that yields a datatype. We can use this concept to describe how higher level, (sometimes) more complex datatypes are created out of lower level datatypes.

One generated datatype, choice, has been omitted because we are not aware that it occurs in any format. This datatype allows such types as the C language's union datatype.

Type
Rough definition
Examples/comments

 Pointer
Values constitute a means of reference to values of another datatype.
There are a wide variety of ways to define and implement pointers. It may be useful to delineate some of these.
8.3.2

Procedure
A function that maps an input space to a result space.
We're not aware of formats that support this, but it is frequently mentioned as a desirable feature.
8.3.3

Aggregate
Values are made up of values of the component datatypes.
Arrays, tables, sets, etc., are aggregate datatypes. See next section.
8.4

9 Simple aggregates

The standard defines an aggregate datatype as "a generated datatype each of whose values is, in principle made up of values of the component datatypes." We use the term "simple aggregates" to distinguish these from more complex aggregates such as multi-resolution grids.

Type
Rough definition
Examples/comments

 Record
Heterogeneous aggregation of values of component datatypes, each aggregation having one value for each component datatype, keyed by a fixed "field identifier."
There are often restrictions on how complex the fields of a record can be, but in principle a field can be any datatype. In general, fields do not have to occur in any particular order, but many formats require a fixed order.
8.4.1

Set
Value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the mathematical set.
What is the utility of this for scientific data?
8.4.2

Bag
Collection of instance of values from the element datatype. Multiple instance of the same value may occur, and ordering of elements is not significant.
This probably corresponds to the HDF5 grouping structure.
8.4.3

Sequence
Ordered sequence of values from the element datatype. The ordering is imposed on the values and not intrinsic in the underlying datatype. The same value may occur more than once in a given sequence. The only way to write to a sequence is to append; there's no replace operation.
Differs from bag in that the ordering is significant. Sequences of scientific records (e.g. observations) are frequently implemented using this datatype.
Is this the same thing as an array with an unlimited dimension?

Is this the same as our general "variable length type."
8.4.4

Array
Values are associations between the product space of one or more finite datatypes, designated the index datatype, and the value space of the element datatype, such that every value in the product space of the index datatypes associates to exactly one value of the element datatype.
Index datatypes correspond to dimensions. Some formats allow dimensions to grow in size after creation, and as a result they are sometimes treated like a sequence. In files, elements are generally stored contiguously, but other organizations are possible.
8.4.5

Table
Unordered collection of values in the product space or one or more field datatypes, such that each value in the product space represents an association among the values of its fields.
Note that the ISO definition specifies "unordered." This definition is meant to produce a datatype that corresponds to the SQL concept of "table."
8.4.6

Defined datatype
A datatype defined by a type-declaration, denoted by a type-reference.
This makes it possible to rename an existing datatype or name an existing datatype that have a complex syntax. This can be useful for applications that want to store complex datatypes by name in a file. It is also used by ISO/IEC 11404 to define other common datatypes (see next section).
8.4.
10
11 Simple defined datatypes and generators

The ISO/IEC 11404 standard specifies several commonly occurring datatypes that are treated as primitive datatypes, but can be derived from the datatypes and generators defined earlier. Types from the standard that are not included in the table are natural number, and modulo.
Type
Rough definition
Examples/comments

Bit
Represents the finite field of two symbols "0" and "1".

10.1.3

Bit string
Datatype of variable length strings of binary digits.

10.1.4

Character string
A family of datatypes that represent strings of symbols from standard character sets.

10.1.5

Octet
The datatype of eight-bit codes, as used for character-sets and private encodings.

10.1.7

Octet string
Datatype of variable length encodings of 8-bit codes.

10.1.8

Private
An application-defined value space and operation set that are intentionally concealed from certain processing entities. There is no denotation for a value of a private datatype.
Makes it possible for a non-standard type to be passed between two parties that understand it by a third party that does not. Also allows the value of a datatype that is meaningless to all parties but one to be used by other parties, as a "handle" is used by an API without the end user understanding its semantics. (Is this also the definition of a blob?) Sometimes called "opaque."
10.1.9

Object identifier
Values that uniquely identify objects in a communications protocol.
See ISO/IEC 11404 gives a precise and thorough definition.
10.1.10

12 Simple defined generators

The ISO/IEC 11404 standard specifies several commonly occurring generators that can be derived from the datatypes and generators defined earlier. They are stack, tree, cyclic enumerated, and optional. We include only optional here.

Type
Rough definition
Examples/comments

Optional
A generator that effectively adds the "nil" value to the value space of a base datatype.
To be used in those instances when an object, such as an array element, a field, or a record, has no value.
10.2.4

Appendix B
How some common formats relate to levels of complexity and abstractness

<<This whole section, including these figures, has to be revised, but I think we should wait until Lou has had a crack at the stuff in the previous two sections.>> We now look at some common scientific formats in the context of the levels of complexity and abstractness described in Table 3 and Figure 1. Figures 2(a)-2(e) illustrate where some popular formats (HDF4, CDF/netCDF, PDS, ISTP-CDF, HDF-EOS) might fit on the spectrum from domain-free to domain-specific. HDF4 is perhaps the most domain-free, and HDF-EOS the most domain-specific, but it is clear that there is a great deal of overlap among many of the formats. Figure 2 illustrates the additional point that one format's domain-free primitives may be the more domain-specific objects supported by another. For instance, HDF4's image is one of the more domain-specific structures in HDF4, but one of the primitives of PDS.

[image: image4.png]Complex
aggregate

S

Complexity of math/CS data type:

Fig. 2(a). Where HDF might fit within the levels.

Irregular grid, Wavelet-based
multi-resolution ~ image, FE mesh,
grid, quad tree polyhedron
Date/time,
spatial
coordinates,

observed image

Density

(a) math/CS

®) general
science

Wavelet-based Wavelet-based

astro image, FE image from
mesh of instrument X,
materials FE mesh for
material X
Geospatial Coordinates of
coordinates, instrument X
astro raster
image
Solar wind Imp-8 solar wind
density density
(¢) domain (d) instrument/app-
specific specific

Levels of application domain specificity

[image: image5.png]Fig. 2(b). Where CDF/netCDF might fit within the levels.

@ Irregular grid, Wavelet-based Wavelet-based Wavelet-based
Complex multi-resolution image, FE mesh, astro image, FE image from

el;me grid, quad tree polyhedron mesh of instrument X,
g materials FE mesh for
B CDF/netCDF material X
= CDF
S Geospatial Coordinates of
S @ sp coordinates, instrument X
= simple coordinates, astro raster
= aggregate observed image image
g
e
S
2
]
= Density Solar wind Imp-8 solar wind
g [¢) density density
S simple

(@) math/CS (b) general (¢) domain (d) instrument/app-
science specific specific

Levels of application domain specificity

[image: image6.png]Fig. 2(c). Where some file formats might

fit within the levels.

@ Irregular grid, Wavelet-based Wavelet-based Wavelet-based
Complex multi-resolution image, FE mesh, astro image, FE image from
aggnpgme grid, quaii polyhedron mesh of instrument X,

g DS <<need advieesout thigsior
£ material X
Z
]
B Coordinates of
S @ instrument X
S smple
= aggregate
g
e
S
2
=
%_ Solar wind Imp-8 solar wind
] M density density
S simple
(@) math/CS (b) general (¢) domain (d) instrument/app-
science specific specific

Levels of application domain specificity

[image: image7.png]3)

Complex

S

Complexity of math/CS data type:

aggregate

@
Simple
aggregate

@

simple

Fig. 2(d). Where some file formats might

fit within the levels.
Irregular grid, Wavelet-based Wavelet-based Wavelet-based
multi-resolution image, FE mesh, astro image, FE image from
grid, quad tree polyhedron mesh of instrument X,
materials FE mesh for
Y er
ISTP-CDPF <<need advice aboli*{iiis > >
Date/time, Geospatial Coordinates of
Character spatial coordinates, instrument X
string, record, P
% ? coordinates astro raster
array, ates, p
raster image observed age
Integer, real . N N
i Density olar wind Imp-8 solar wind
g;:asrta'::rt‘g; density density

(a) math/CS (b) general () domain (d) instrument/app-
science specific specific

Levels of application domain specificity

[image: image8.png]Fig. 2(e). Where some file formats might

fit within the levels.
@ Irregular grid, Wavelet-based Wavelet-based Wavelet-based
Complex multi-resolution image, FE mesh, astro image, FE image from

el;me grid, quad tree polyhedron mesh of instrument X,
g materials FE mesh for
2 >
£ HDF-EOS
]
s "
=1 Coordinates of

Character .

S @ string, record, instrument X
= simple array,
= g
E aggregate raster image
e
S
2
g Integer, real
- H i Solar wind Imp-8 solar wind
E) bit string, Density pl p-8 sola
] M lensity density
S simple character
@]

(a) math/CS (b) general () domain (d) instrument/app-
science specific specific

Levels of application domain specificity

Appendix C Requirements of Formats

80. Specific data structures and implementation details are hidden <<Do you mean that implementation data structure are hidden, but not necessarily other data structures?>>

Access is restricted to API/IOLIB so structural metadata is hidden

<<I think the next three bullets also apply to "data structure formats.>>

81. Contain adequate semantic metadata required for understanding contents

82. Data model may include complex aggregates in additions to simple type and aggregates

83. Tend to use well documented standard encodings such as ASCII and IEEE floating point for simple types but may optimize for specific operating platforms

84. Tend to be optimized for access speed first and size second

· Instances be self describing through the use of embedded tags <<DML does this, too, I think.>>

· Data tends to be machine interpretable through the API/IOLIB but useless without the API/IOLIB

· Sometimes we describe the objects of a format in terms of a Data Structure. There are two techniques for documenting data structures

· A separable description written in a Data Description language (DDL). <<If you are saying that "data structures formats" are the same as "DDL", I'm not so sure about this. E.g. I think of FITS as a data structure format, but it doesn't has a DDL, as far as I know.>>

· A set of embedded tags which is often describes as a Data Markup Language(DML)
Typically description/markup languages are defined via a specification document, and allow a wide variety of object types, layouts, and relationships to be described. Their data values are then accessed using software that understands the language. The choice of whether to use a DML or a DDL is based on the size/granularity of the underlying elementary data types, the ease of inserting tags into the data, the ratio of data instances to unique formats and requirements for self-description and verification. The EAST data description language can describe a sequence of repeating records where part of the record structure can vary from record to record, and where a wide variety of standard and custom data types are supported at the bit level. The PDS ODL and FITS are hybrid DDL/DML where large binary data objects are encapsulated by a set of tags. IDFS uses a description language as a part of its system. XML has recently emerged as a general purpose markup language that, in combination with appropriate document type definitions (DTD), can describe almost any format.

<<Another use of DML: verification.>>

<<What about profiles? Seems like ISTP-CDF is a data structure format, and HDF-EOS is an API format.>>

85. Characteristics of instances of DDL/DML formats include:

86. Contain high level structural Metadata which terminates at the underlying elementary datatypes

87. Contain complete semantic metadata required for understanding contents

88. Data Model usually contains simple types and aggregates only

89. Use well documented standard encodings for simple types such as ASCII character strings and IEEE floating point

5. Are machine interpretable and human understandable

6. Instances be self describing through the use of embedded tags or defined externally in a Data Description written in a Data Description Language (DDL)
7. Not optimized for speed of access or for size. <<or are not including negative features?>>

� DX = Data Explorer format (IBM); CDF = Common Data Format (NASA); FITS = Flexible Image Transport (Astronomy); HDF = Hierarchical Data Format (NCSA); netCDF = network Common Data Form (Unidata); PDS = Planetary Data System (JPL); XDR = external data representation (Sun).

� DX = Data Explorer format (IBM); CDF = Common Data Format (NASA); FITS = Flexible Image Transport (Astronomy); Flatfile = UCLA 2-file table format; HDF = Hierarchical Data Format (NCSA); HDF-EOS = Earth Observing System HDF-based format; IMP-8 = Interplanetary Monitor Platform format; ISTP-CDF = International Solar-Terrestrial Physics Project CDF-based format; MPI-IO = message passing interface I/O interface, for performing I/O in parallel; netCDF = network Common Data Form (Unidata); PDS = Planetary Data System (JPL); XDR = external data representation (Sun); zip = a UNIX archiving and compression utility.

� CDF and Flatfile both primarily support 1c object types, but each also supports a date/time datatype, and hence are also listed as examples of level 2a formats.

� The design of HDF-EOS assumes, but does not require, that these datatypes will be built using objects in the more general HDF format.

� ISO/IEC types that are not included:

primitive types state, ordinal, rational

generated type choice

simple defined types and generators natural number, modulo

simple defined generators stack, tree, cyclic enumerated

levels-layers_Rev_15rev6.doc

31/31

_1027073492.doc
[image: image1.png]Fig. 1b. Comparing two formats in terms of complexity and domain specialization.

®
Complex
aggregate

S

HDF4

@
Simple
aggregate

HDF-EOS

@

simple

Complexity of math/CS data type:

(a) math/CS (b) general () domain (d) instrument/app-
science specific specific

Levels of application domain specificity

