Hubble Observations Shed New Light on Jupiter Collision
Donald Savage
Headquarters, Washington, D.C.
September 29, 1994
(Phone: 202/358-1547)
Jim Elliott
Goddard Space Flight Center, Greenbelt, Md.
(Phone: 301/286-6256)
Ray Villard
Space Telescope Science Institute, Baltimore, Md.
(Phone: 410/338-4514)
RELEASE: 94-161
HUBBLE OBSERVATIONS SHED NEW LIGHT ON JUPITER COLLISION
Was it a comet or
an asteroid? Scientists are debating that question as they continue to
pore over Hubble Space Telescope imaging and spectroscopic data gleaned
in the wake of the spectacular July bombardment of Jupiter by comet
P/Shoemaker-Levy 9. Their initial findings, combined with results from
other space-borne and ground-based telescopes, shed new light on Jupiter's
atmospheric winds, its immense magnetic field, the mysterious dark debris
from the impacts, and the composition of the doomed comet itself. These
early results are being presented at a press conference today at NASA
Headquarters, Washington D.C., by astronomers John Clarke, University of Michigan, Ann Arbor; Heidi Hammel,
Massachusetts Institute of Technology, Cambridge; and Harold Weaver and Melissa McGrath, Space Telescope Science
Institute, Baltimore.
THE LAST DAYS OF THE COMET
Before the comet impact, there was a great deal of speculation
and prediction about whether the 21 nuclei would survive before reaching Jupiter, or were so fragile that
gravitational forces would pull them apart into thousands of smaller fragments. Hubble helped solve this question
by watching the nuclei until about 10 hours before impact. HST's high resolution images show that the nuclei, the
largest of which were probably a few kilometers across, did not break up catastrophically before plunging into
Jupiter's atmosphere. This reinforces the notion that the atmospheric explosions were produced by solid, massive
impacting bodies. HST's resolution also showed that the nuclei were releasing dust all along the path toward Jupiter,
as would be expected from a comet. This was evident in the persistence of spherical clouds of dust surrounding each
nucleus throughout most of the comet's journey. About a week before impact, these dust clouds were stretched out
along the path of the comet's motion by Jupiter's increasingly strong gravity.
WAS P/SHOEMAKER-LEVY 9 A COMET OR AN ASTEROID?
At present, observations seem to slightly favor a cometary origin, though an asteroidal origin cannot yet be
ruled out. The answer isn't easy because comets and asteroids have so much in common: they are small bodies;
they are primordial, having formed 4.6 billion years ago along with the planets and their satellites; either
type of object can be expected to be found in Jupiter's vicinity. The key difference is that comets are largely
icy while the asteroids are virtually devoid of ice because they formed too close to the Sun. The attached table
summarizes the observational results that shed light on this question.
WHAT IS THAT DARK STUFF MADE OF?
The HST Faint Object Spectrograph (FOS) detected many gaseous absorptions associated
with the impact sites and followed their evolution over the next month. Most surprising were the strong signatures
from sulfur-bearing compounds like diatomic sulfur (S2), carbon disulfide (CS2), and hydrogen sulfide (H2S).
Ammonia (NH3) absorption also was detected. The S2 absorptions seemed to fade on timescales of a few days, while
the NH3 absorptions at first got stronger with time, and finally started fading after about one month. During
observations near the limb of Jupiter, the FOS detected emissions from silicon, magnesium and iron that could
only have originated from the impacting bodies, since Jupiter itself normally does not have detectable amounts
of these elements.
SWEPT ACROSS JUPITER
Observations made with HST's Wide Field Planetary Camera-2, a week and
a month after impact, have been used to make global maps of Jupiter for tracking changes in the dark debris caught
up in the high-speed winds at Jupiter's cloudtops. This debris is a natural tracer of wind patterns and allows
astronomers a better understanding of the physics of the Jovian atmosphere. The high speed easterly and westerly
jets have turned the dark "blobs" originally at the impact sites into striking "curly-cue" features. Although
individual impact sites were still visible a month later despite the shearing, the fading of Jupiter's scars has
been substantial and it now appears that Jupiter will not suffer any permanent changes from the explosions.
Hubble's ultraviolet observations show the motion of very fine impact debris particles now suspended high in
Jupiter's atmosphere. The debris eventually will diffuse down to lower altitudes. This provides the first
information ever obtained about Jupiter's high altitude wind patterns. Hubble gives astronomers a "three dimensional"
perspective showing the wind patterns at high altitudes and how they differ from those at the visible cloudtop level.
At lower altitudes, the impact debris follows east-west winds driven by sunlight and Jupiter's own internal heat.
By contrast, winds in the high Jovian stratosphere move primarily from the poles toward the equator because they
are driven mainly by auroral heating from high energy particles.
PIERCING JUPITER'S MAGNETIC FIELD
About four days
before impact, at a distance of 2.3 million miles from Jupiter, nucleus "G" of comet P/Shoemaker-Levy 9 apparently
penetrated Jupiter's powerful magnetic field, the magnetosphere. (Jupiter's magnetosphere is so vast, if visible
from Earth, it would be about the size of the full Moon.) Hubble's Faint Object Spectrograph (FOS) recorded dramatic
changes at the magnetosphere crossing that provided a rare opportunity to gather more clues on the comet's true
composition. During a two minute period on July 14, HST detected strong emissions from ionized magnesium (Mg II),
an important component of both comet dust and asteroids. However, if the nuclei were ice-laden -- as expected of
a comet nucleus -- astronomers expected to detect the hydroxyl radical (OH). Hubble did not see OH, casting some
doubt on the cometary nature of comet P/Shoemaker-Levy 9. Eighteen minutes after comet P/Shoemaker- Levy 9 displayed
the flare-up in Mg II emissions, there was also a dramatic change in the light reflected from the dust particles in
the comet.
NEW AURORAL ACTIVITY
HST detected unusual auroral activity in Jupiter's northern hemisphere just after
the impact of the comet's "K" fragment. This impact completely disrupted the radiation belts which have been stable
over the last 20 years of radio observations. Aurorae, glowing gases that create the northern and southern lights,
are common on Jupiter because energetic charged particles needed to excite the gases are always trapped in Jupiter's
magnetosphere. However, this new feature seen by Hubble was unusual because it was temporarily as bright or brighter
than the normal aurora, short-lived, and outside the area where Jovian aurorae are normally found. Astronomers believe
the K impact created an electromagnetic disturbance that traveled along magnetic field lines into the radiation belts.
This scattered charged particles, which normally exist in the radiation belts, into Jupiter's upper atmosphere.
X-ray images taken with the ROSAT satellite further bolster the link to the K impact. They reveal unexpectedly
bright X-ray emissions that were brightest near the time of the K impact, and then faded. The Space Telescope
Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA,
under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of
international cooperation between NASA and the European Space Agency (ESA).
Author/Curator:
Dr. David R. Williams, dave.williams@nasa.gov
NSSDCA, Mail Code 690.1
NASA Goddard Space Flight Center
Greenbelt, MD 20771
+1-301-286-1258
NASA Official: Dave Williams, david.r.williams@nasa.gov
Last Updated: 30 December 2004, DRW