NASA Logo, National Aeronautics and Space Administration
NASA Space Science Data Coordinated Archive Header

Laser Retroreflector Array (LRA)

NSSDCA ID: 2023-098A-05

Mission Name: Chandrayaan 3
Principal Investigator:Dr. Xiaoli Sun

Description

The Laser Retroreflector Array (LRA) is designed to use reflected laser light from orbiting spacecraft laser (typically a laser altimeter or light detection and ranging - lidar) to precisely determine the location of the lander, as a fiducial marker, and the distance to that point on the lunar surface with respect to the orbiter. The retroreflectors reflect any light striking them directly back to the source. They can be tracked by an orbiting laser altimeter or lidar from a few hundred kilometers. The LRA is mounted on the Vikram lander. On 12 December 2023, the Lunar Reconnaissance Orbiter transmitted laser pulses and received the reflections from the Vikram LRA.

The LRA consists of eight circular 1.27-cm diameter corner-cube retroreflectors mounted on a 5.11 cm diameter, 1.65 cm high hemispherical gold-painted platform. Each of the eight retroreflectors points in a slightly different direction, and each has a maximum useful light incidence angle of about +-20 degrees. Four retroreflectors are evenly distributed in a ring on the hemisphere 20 degrees from zenith, and four in a ring 40 degrees from zenith. They are made from Suprasil quartz, index of refraction is 1.46. The equivalent optical cross section is 10,000 to 100,000 square meters, but is still not enough to use Earth-based laser ranging. Total mass of the LRA is 20 grams, it requires no power.

Note that laser altimeters are not designed to be used to range to the LRAs, they have very small footprints and would only "hit" an LRA on occasional passes. Lidars with wider footprints are more efficient for actual ranging from orbiters. Also note that if the range to an orbiter can be precisely determined (e.g. from a larger LRA on the orbiter that can be ranged to from Earth), an accurate distance from Earth to the LRA on the lunar surface can be obtained. Measurements from multiple LRAs at different points on the Moon can be used to create an accurate geodetic network.

Image credit: NASA-GSFC

Alternate Names

  • Chandrayaan3/LaserRetroreflector
  • LRA

Facts in Brief

Mass: 0.02 kg

Funding Agency

  • National Aeronautics and Space Administration (United States)

Discipline

  • Planetary Science: Geology and Geophysics

Additional Information

Questions and comments about this experiment can be directed to: Dr. David R. Williams

 

Personnel

NameRoleOriginal AffiliationE-mail
Dr. Xiaoli SunPrincipal InvestigatorNASA Goddard Space Flight Centerxiaoli.sun-1@nasa.gov
[USA.gov] NASA Logo - nasa.gov