NASA Logo, National Aeronautics and Space Administration
NASA Space Science Data Coordinated Archive Header

CORONAS-F

NSSDCA/COSPAR ID: 2001-032A

Description

CORONAS-F (also known as KORONAS-F, and AUS-SM-KF) is a Russian solar observatory that was launched by a Tsiklon 3 rocket from Plesetsk at 08:00 UT on 31 July 2001. The 2,260 kg (with fuel) spacecraft will be pointing toward Sun within 10 arc-minutes to conduct a variety of observations. In broad categories, it carries X-ray monitors to locate sources within 1 arc-sec, radio receivers to measure flux and polarization, and particle counters.

The DIFOS instrument (Investigator: V. N. Oraevsky, IZMIRAN) is to monitor fluctuations in light intensity in six optical bands (350, 500, 650, 850, 1,100, and 1.500 nanometer) at a precision of one part in a million. The analysis will reveal a spectrum of normal mode seismic oscillations in the Sun.

The SORS instrument (Investigators: S. A. Pulinets, IZMIRAN, and Z. Kloss, CBK-PAN) will monitor solar radio bursts of II, III, and IV types, in the range 0.1-30 MHz, with 0.5 microvolt sensitivity and through 400 frequency channels, with a full spectrum enabled in three seconds.

The ZENIT instrument (Investigator: V. N. Oraevsky, IZMIRAN) is a coronograph to monitor the corona out to six solar radii in the 750-850 nm band, at a resolution of 1 arc-min. A full scan is done in less than a minute.

The SUFR instrument (Investigator: T. V. Kazachevskaya, IAG) is a UV radiometer in the 0.1-130 nm band to capture the full disk emission from the Sun, in the dynamic range 0.1-30 erg/sq-cm/sec.

The VUSS instrument (Investigator: A. A. Nousinov, IAG) is designed to monitor the intensity of full-disk, 121.6 nm Lyman-Alpha line in a band of 5 nm width, with a dynamic range of 0.1-30 erg/sq-cm/sec.

The DIAGENESS instrument (Investigators: Y. Silvester, CBK-PAN, and S. Boldyrev, IZMIRAN) is to scan the Sun's active regions and flares at five arc-sec resolution in the bands 29.601-33.915, 49.807-53.721, 61.126-67.335 nm at a tempral resolution of 0.1-10 seconds. It is also to monitor the full disk X-ray emissions in the bands 2-8 keV, and 10-160 keV at a temporal resolution of about one second.

The RESIK instrument (Investigator: Y. Silvester, CBK-PAB, and S. Boldyrev, IZMIRAN) is a bent crystal X-ray spectrometer to monitor the bands 11.23-12.93, 12.74-14.42, 14.36-16.30, 16.53-20.29, 21.54-24.45, 24.80-30.43, 33.69-38.79, 38.21-43.26, and 49.60-60.86 nm. The first seven bands pertain, respectively, to emissions from Ar, Mg, Si, S, Ca, Fe, K, Ni, and the last is a continuum.

The IRIS experiment (Investigator: Kocharov, PTI) aims to monitor hard X-ray flares in the 2.0-200 keV energy range at temporal resolution of 0.01-2.5 seconds, with a sensitivity of 10 nanoergs/sq-cm/sec. The sensitivity in the 2-15 keV is high enough to capture microflares and precursors in a number of small width channels.

The HELIKON instrument (Investigator: E. P. Mazets, PTI) is to capture high energy X-rays and Gamma rays in the range 10 keV-8 MeV. It carries two detectors, one pointing to the Sun and the other in the anti-solar direction to monitor the energy range in 128 channels, and with 4,096 channels to cover the lower range of 10 keV-1.0 MeV.

The SKL instrument (Investigator: S. N. Kuznetsov, NIIYaF-MSU) has three components. The SONG is to measure solar Gamma rays in the 0.03-100 MeV band through a total of 250 channels, the neutrons in the range 3.0-100 MeV through five channels, and electrons in the 11-108 MeV range through six channels. The second component, MKL is to capture protons in the range 1-300 MeV, electrons in the 0.5-12 MeV, protons at >10 MeV, and electrons at >1.3 MeV. The third component, SKI-3 is to ascertain the chemical composition in the Z = 1-10 group in the 1.5-20 MeV ions. It has a channel for 1.5-19 MeV protons.

The RES-K instrument (Investogator: I. A. Zhitnik (LPI) is a X-ray spectroheliograph to provide high resolution images of the solar disk using the emission lines of FeXXIV and FeXXV in the 18.5 -18.7 nm, and the MgXII line in the 84.1-84.3 nm range. Images in the emission lines covering 1800-2050 nm and 2850-3350 nm will also be obtained by scanning the range in widths of 0.3 nm. The images will be at a spatial resolution of six arc-sec. Each full-disk image is to be produced in about six seconds.

The RPS instrument (Investigator: V. M. Pankov, IKI, and Yu. D. Kotov, MEPHI) is an X-ray spectrometer covering the 3-30 keV band in steps of 1.5 keV. The range includes the Fe55 line at 5.9 keV. The detector width is 0.5 sq-cm.

Lastly, the SPR-N instrument (Investigator: I. Sobelman, FIAN, and S. Kuznetsov, NIIYAF) is a X-ray polarimeter to measure nonthermal/synchrotron emissions in solar flares in the energy ranges 20-40, 40-60, and 60-100 keV range at a sensitivity of one microerg/sq-cm/sec.

More details may be obtained via http://www.izmiran.rssi.ru/projects/CORONAS/F/.

A similar version of this observatory, CORONAS-I (KORONAS-I, 1994-041A) was launched in 1994, but its functionality was crippled by orientation control failure a few months after launch.

Alternate Names

  • 26873
  • KORONAS-F
  • AUS-SM-KF
  • 2001-032A

Facts in Brief

Launch Date: 2001-07-31
Launch Vehicle: Tsiklon-3
Launch Site: Plesetsk, Russia

Funding Agency

  • Russian Space Agency Russia

Disciplines

  • Space Physics
  • Solar Physics

Additional Information

Questions and comments about this spacecraft can be directed to: Coordinated Request and User Support Office

 

Personnel

NameRoleOriginal AffiliationE-mail
Prof. Victor N. OraevskyMission ScientistIZMIRANoraecsky@izmiran.rssi.ru
[USA.gov] NASA Logo - nasa.gov